- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Coeurjolly, David (2)
-
Jarosz, Wojciech (2)
-
Ostromoukhov, Victor (2)
-
Singh, Gurprit (2)
-
Subr, Kartic (2)
-
Ahmed, Abdalla G.M. (1)
-
Deussen, Oliver (1)
-
Ramamoorthi, Ravi (1)
-
Öztireli, Cengiz (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Singh, Gurprit; Subr, Kartic; Coeurjolly, David; Ostromoukhov, Victor; Jarosz, Wojciech (, Computer Graphics Forum)Abstract Fourier analysis is gaining popularity in image synthesis as a tool for the analysis of error in Monte Carlo (MC) integration. Still, existing tools are only able to analyse convergence under simplifying assumptions (such as randomized shifts) which are not applied in practice during rendering. We reformulate the expressions for bias and variance of sampling‐based integrators to unify non‐uniform sample distributions [importance sampling (IS)] as well as correlations between samples while respecting finite sampling domains. Our unified formulation hints at fundamental limitations of Fourier‐based tools in performing variance analysis for MC integration. At the same time, it reveals that, when combined with correlated sampling, IS can impact convergence rate by introducing or inhibiting discontinuities in the integrand. We demonstrate that the convergence of multiple importance sampling (MIS) is determined by the strategy which converges slowest and propose several simple approaches to overcome this limitation. We show that smoothing light boundaries (as commonly done in production to reduce variance) can improve (M)IS convergence (at a cost of introducing a small amount of bias) since it removesC0discontinuities within the integration domain. We also propose practical integrand‐ and sample‐mirroring approaches which cancel the impact of boundary discontinuities on the convergence rate of estimators.more » « less
An official website of the United States government
